TOPICS IN SET THEORY: Example Sheet 1⁻¹

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge

Michaelmas 2014-2015 Dr Oren Kolman

- **1** Fix and state a definition of the cardinality of a set X. Consider the following variants of the Continuum Hypothesis CH.
 - **NI (No Interpolant)** There is no infinite set X of real numbers such that the cardinality of X is strictly between those of \mathbb{N} and \mathbb{R} .
 - WOR $\langle \aleph_2 \rangle$ (Well-ordered Reals less than order-type \aleph_2) Every well-ordering of \mathbb{R} has order-type less than \aleph_2 .
 - **NOSUR** \aleph_2 (No surjection onto \aleph_2) There is no surjection from \mathbb{R} onto \aleph_2 .

Using your definition of cardinality, prove that the three variants are equivalent. Indicate any places where you appeal to the axiom of choice (AC).

- **2** Prove that there exists a subset $S \subseteq \mathbb{R}^2$ that has exactly two points on every line. [S. Mazurkiewicz, C.R. Soc. Sc. et Lettres de Varsovie 7(1914), 382-383.]
- 3 The Continuum Hypothesis and Sierpiński decompositions of the plane
 - (i) Prove that $2^{\aleph_0} = \aleph_1$ implies the following assertion SD:

there exist sets A and B such that $\mathbb{R}^2 = A \cup B$ and $A \cap l$ and $B \cap m$ are countable for every horizontal line l and every vertical line m in \mathbb{R}^2 . [HINT. Using CH enumerate \mathbb{R} as $\{r_{\alpha} : \alpha < \omega_1\}$, and consider $A = \{(x, y) : x = r_{\alpha}, y = r_{\beta}, \alpha < \beta\}$.]

(ii) Show that SD implies CH.

[HINT. Suppose $2^{\aleph_0} \geq \aleph_2$ and let A and B be a Sierpiński decomposition; let $Z \subseteq \mathbb{R}$ have size \aleph_1 ; for each $y \in \mathbb{R}$ find $z \in Z, (z, y) \notin A$; recall the Pigeonhole Principle.]

(iii) Deduce that CH is equivalent to SD.

COMMENT. The sets A and B are called a *Sierpiński decomposition*.

4 The Continuum Hypothesis and rainbow colourings

For a set X and cardinal κ , let $[X]^{<\kappa} = \{Y : Y \subseteq X, |Y| < \kappa\}$.

(i) Prove that $2^{\aleph_0} = \aleph_1$ implies the following assertion RAINBOW:

there exists a function $f : \mathbb{R} \to [\mathbb{R}]^{<\aleph_1}$ such that for every uncountable set $X \subseteq \mathbb{R}, \bigcup_{x \in X} f(x) = \mathbb{R}$.

 $^{^{1}}$ Comments, improvements and corrections will be much appreciated; please send to ok261@cam.ac.uk; rev. 14/12/2014.

- (ii) Show that RAINBOW implies CH.
- (iii) Deduce that CH is equivalent to RAINBOW.
- 5 FREILING'S Axiom of Symmetry (Sierpiński; Steinhaus; Freiling [1986])

Suppose κ is an infinite cardinal. Recall that $A_{<\kappa}(X)$ is the following assertion: for every function $f: X \to [X]^{<\kappa}$ there exist x_1 and x_2 such that $x_1 \notin f(x_2)$ and $x_2 \notin f(x_1)$.

- (i) Prove (in ZF) that $A_{<2^{\aleph_0}}(\mathbb{R})$ implies that there is no well-ordering of \mathbb{R} . [HINT. Reconsider the proof that $\neg CH$ is equivalent to $A_{<\aleph_1}(\mathbb{R})$.]
- (ii) Let $A_{null}(\mathbb{R})$ be the assertion: for every function $f : \mathbb{R} \to \{A : A \subseteq \mathbb{R} \text{ has Lebesgue} \text{ measure } 0\}$ there exist x_1 and x_2 such that $x_1 \notin f(x_2)$ and $x_2 \notin f(x_1)$. Prove (in ZFC) that $A_{null}(\mathbb{R})$ implies that there exists a non-measurable set of cardinality less than 2^{\aleph_0} and $\mathbb{R} \neq \bigcup_{\alpha < \omega_1} N_{\alpha}$ for any family $\{N_{\alpha} : \alpha < \omega_1\}$ such that every N_{α} has measure 0.
- (iii) Assume $ZFC + 2^{\aleph_0} = \aleph_2$. Prove that $A_{null}(\mathbb{R}) \Leftrightarrow$ (there exists a non-measurable set of cardinality less than 2^{\aleph_0} and $\mathbb{R} \neq \bigcup_{\alpha < \omega_1} N_{\alpha}$ for any family $\{N_{\alpha} : \alpha < \omega_1\}$ such that every N_{α} has measure 0).
- 6 (i) Prove that if X is an uncountable subset of \mathbb{R} , then there exists $r \in X$ such that each of the sets $X \cap (-\infty, r)$ and $X \cap (r, \infty)$ is uncountable.
 - (ii) Prove that if X is an subset of \mathbb{R} of size continuum, then there exists $r \in X$ such that each of the sets $X \cap (-\infty, r)$ and $X \cap (r, \infty)$ is of size continuum.
 - (iii) Say that a real number r bisects the set $X \subseteq \mathbb{R}$ if $|X \cap (-\infty, r)| = |X \cap (r, \infty)|$. Prove the following are equivalent:
 - (a) every uncountable subset $X \subseteq \mathbb{R}$ is bisected by some real r;
 - (b) $2^{\aleph_0} < \aleph_{\omega}$.
 - (iv) Let $BS(\mathbb{R}^2)$ be the assertion: for every uncountable set $S \subseteq \mathbb{R}^2$ there exists a line l such that $|S \cap l^+| = |S \cap l^-|$, where l^+ and l^- are the strict half-planes determined by l. Call such a line a *bisector* of S. Find necessary and sufficient cardinal hypotheses for the provability of $BS(\mathbb{R}^2)$ (if these exist).
 - (v) Can you suggest any generalizations of $BS(\mathbb{R}^2)$ to e.g. other sorts of line (Sorgenfrey, Suslin, the long line ...), or infinite-dimensional Hilbert or Banach spaces? Do any other lines have the property that the conditions (a) and (b) above are equivalent?
- 7 The Continuum Hypothesis CH is equivalent to the assertion that there is a family $\{A_{\alpha} : \alpha < \omega_1\}$ of infinite subsets of ω such that if $X \subseteq \omega$ is infinite, then there is some $\alpha < \omega_1$ such that $A_{\alpha} \setminus X$ is finite. [F. Rothberger, Fund. Math. 35 (1948), 29-46.]
- 8 Sierpiński Sets; Lusin (Mahlo) Sets

An uncountable set $X \subseteq \mathbb{R}$ is a *Sierpiński set* if $X \cap A$ is countable for every set A of Lebesgue measure 0; an uncountable set $Y \subseteq \mathbb{R}$ is a *Lusin set* if $Y \cap B$ is countable for every set B of first category.

- (i) Prove every Sierpiński set is of first category.
- (ii) Prove every Lusin set has Lebesgue measure 0.
- (iii) *CH* implies there exists a Sierpiński set.
- (iv) CH implies there exists a Lusin set.
- (v) Prove that the following are equivalent:
 - CH;
 - there exists a Sierpiński set and every subset of \mathbb{R} of cardinality less than 2^{\aleph_0} has Lebesgue measure 0;
 - there exists a Lusin set and every subset of \mathbb{R} of cardinality less than 2^{\aleph_0} is of first category.
- **9** Suppose X is an uncountable complete metric space with a countable base. Prove that X has a subset Y of cardinality 2^{\aleph_0} which includes no perfect subset. [HINT. Let $\{C_{\alpha} : \alpha < 2^{\aleph_0}\}$ list all the closed sets of size at least 2^{\aleph_0} (why is this possible?); pick $x_{\alpha}, y_{\alpha} \in C_{\alpha} \setminus \{x_{\beta}, y_{\beta} : \beta < \alpha\}, x_{\alpha} \neq y_{\alpha}$; consider $Y = \{y_{\alpha} : \alpha < 2^{\aleph_0}\}$.]
- 10 Recall that an infinite abelian group G is almost free if and only if every subgroup of G of cardinality less than |G| is free. Show that CH is equivalent to the assertion that the group \mathbb{Z}^{ω} is almost free, where \mathbb{Z}^{ω} is the group of integer-valued sequences under component-wise addition. [You may assume without proof the fact that \mathbb{Z}^{ω} is \aleph_1 -free; you should try to prove that \mathbb{Z}^{ω} is not \aleph_2 -free: pick a prime p, consider a subgroup H of size \aleph_1 , containing the direct sum $\bigoplus_{n \in \omega} \mathbb{Z}$, and consisting of elements whose "tails" are divisible by arbitrarily high powers of p; towards a contradiction, compare the cardinalities of H and H/pH if H were free.]

11 CARDINAL INVARIANTS/CHARACTERISTICS

Define the quasi-order \leq^* on the set $\omega \omega = \{f : f \text{ is a function from } \omega \text{ to } \omega\}$ as follows:

 $f \preceq^* g \Leftrightarrow f(n) \leq g(n)$ for all but finitely many $n \in \omega$.

A subset $B \subseteq {}^{\omega}\omega$ is unbounded if B is unbounded in $({}^{\omega}\omega, \preceq^*)$; a subset $D \subseteq {}^{\omega}\omega$ is dominating if D is cofinal in $({}^{\omega}\omega, \preceq^*)$ (i.e. $(\forall f \in {}^{\omega}\omega)(\exists g \in D)(f \preceq^* g)$); a dominating set D is a scale if D is well-ordered by \preceq^* . Let $\mathfrak{a} = min\{|A|: A \text{ is an infinite maximal almost disjoint family of subsets of <math>\omega\}$, $\mathfrak{b} = min\{|B|: B \text{ is unbounded in } ({}^{\omega}\omega, \preceq^*)\}$, and $\mathfrak{d} = min\{|D|: D \text{ is dominating in } ({}^{\omega}\omega, \preceq^*)\}$. The cardinals $\mathfrak{a}, \mathfrak{b}$, and \mathfrak{d} are the simplest examples of cardinal invariants (or characteristics) of the continuum.

- (i) Prove that $\aleph_1 \leq \min\{\mathfrak{a}, \mathfrak{b}, \mathfrak{d}\} \leq \max\{\mathfrak{a}, \mathfrak{b}, \mathfrak{d}\} \leq 2^{\aleph_0}$.
- (ii) Prove that $\mathfrak{b} \leq \mathfrak{a}$.
- (iii) Prove that $\mathfrak{b} \leq \mathfrak{d}$.

COMMENT. Cardinal invariants of the continuum have proliferated and are intensively studied. They frequently give rise to independence phenomena; ZFC-provable strict inequalities and equations are rare and elusive. An introductory account is given by Eric van Douwen, The integers and topology, in: Kunen, K., Vaughan, J.E., Handbook of Set-theoretic Topology, Elsevier Science Publishers, 1984; for an advanced recent survey, see Andreas Blass, Combinatorial characteristics of the Continuum, in: Kanamori, A., Foreman, M., Handbook of Set Theory, Springer, Berlin, 2012.

12 ULAM MATRICES

(i) Prove there exists a family $\{A_{\alpha,n} : \alpha < \omega_1, n < \omega\}$ of sets such that

(1) for every $\alpha < \omega_1$, the set $\omega_1 \setminus \bigcup_{n < \omega} A_{\alpha,n}$ is countable;

(2) if $\alpha \neq \beta < \omega_1$, then $A_{\alpha,n} \cap A_{\beta,n} = \emptyset$ for all $n < \omega$.

[HINT. For each ordinal $\alpha < \omega_1$, choose a surjection f_α from ω onto α (why is this possible?), and now consider the set $A_{\alpha,n} = \{\xi : f_\xi(n) = \alpha\}$.]

- (ii) Determine whether the following assertion is provable: there exists a family $\{A_{\alpha,n} : \alpha < \omega_1, n < \omega\}$ of sets such that
 - (1) for every $\alpha < \omega_1$, the set $\omega_1 \setminus \bigcup_{n < \omega} A_{\alpha,n}$ is finite;
 - (2) if $\alpha \neq \beta < \omega_1$, then $A_{\alpha,n} \cap A_{\beta,n} = \emptyset$ for all $n < \omega$.
- 13 (i) Show that if D is a dense subset of the linear order $(\mathbb{R}, <)$ and $\varphi : D \to D$ is an order-automorphism, then φ has a unique extension to an order-automorphism $\tilde{\varphi}$ of $(\mathbb{R}, <)$.
 - (ii) Prove that any order-automorphism of (ℝ, <) is determined by its values on Q.
 Deduce that there are exactly 2^{ℵ0} order-automorphisms of (ℝ, <).
 - (iii) Prove that there exists an uncountable rigid dense subset of the real line which has no non-trivial order-automorphism, i.e. no order-automorphism other than the identity.
 [B. Dushnik, E.W. Miller, Concerning similarity transformations of linearly ordered sets, Bull. Amer. Math. Soc. 46 (1940), 322–326.]
 - (iv) Deduce that CH implies the existence of a rigid dense set of reals of size \aleph_1 .
- **14** (i) Suppose that $\aleph_1^{\aleph_0} = \aleph_1$. Prove for all non-zero $n < \omega, \aleph_n^{\aleph_0} = \aleph_n$.
 - (ii) Recall that the beth function on *Ord* is defined as follows: $\beth_0 = \aleph_0, \beth_{\alpha+1} = 2^{\beth_{\alpha}}, \beth_{\delta} = \bigcup_{\alpha < \delta} \beth_{\alpha}$ for limit ordinals δ . Prove that $\beth_{\omega_1}^{\aleph_0} < \beth_{\omega_1}^{\aleph_1}$.
- 15 Prove that for every non-zero ordinal $\alpha < \omega_2$, there is a surjection from \mathbb{R} onto α . Now do it without assuming AC.
- 16 QUESTION.

Can one prove the existence of a rigid dense set D of real numbers of size \aleph_1 in ordinary set theory?